Page 251 - Công nghệ kỹ thuật và công nghệ thông tin trong tiến trình công nghiệp hóa - hiện đại hóa Đồng bằng sông Cửu Long
P. 251
Yang, H., Chen, Q., Qian, J., Li, J., Lin, X., Liu, Z., Fan, N., & Ma, W. (2024).
Determination of dry-matter content of kiwifruit before harvest based on
hyperspectral imaging. AgriEngineering, 6(1), 52–63. https://doi.org/10.3390/
agriengineering6010004
Yang, X., Chen, J., Jia, L., Yu, W., Wang, D., Wei, W., Li, S., Tian, S., & Wu, D.
(2020). Rapid and non-destructive detection of compression damage of yellow
peach using an electronic nose and chemometrics. Sensors, 20(7), 1866.
https://doi.org/10.3390/s20071866
Yap, M., Fernando, W. M. A. D. B., Brennan, C. S., Jayasena, V., & Coorey, R.
(2017). The effects of banana ripeness on quality indices for puree production.
LWT, 80, 10–18. https://doi.org/10.1016/j.lwt.2017.01.073
Zeb, A., Qureshi, W. S., Ghafoor, A., Malik, A., Imran, M., Iqbal, J., & Alanazi, E.
(2021). Is this melon sweet? A quantitative classification for near-infrared
spectroscopy. Infrared Physics and Technology, 114(October 2020), 103645.
https://doi.org/10.1016/j.infrared.2021.103645
Zhang, D., Xu, L., Wang, Q., Tian, X., & Li, J. (2019a). The optimal local model
selection for robust and fast evaluation of soluble solid content in melon with
thick peel and large size by Vis-NIR spectroscopy. Food Analytical Methods,
12(1), 136–147. https://doi.org/10.1007/s12161-018-1346-3
Zhang, H., Wu, J., & Ma, H. (2019b). Acoustic firmness measurement of differently
shaped pears: Comparison of resonance indices with propagation indices.
Postharvest Biology and Technology, 148, 151–157. https://doi.org/10.1016/j.
postharvbio.2018.11.002
Zhang, Y., Lee, W. S., Li, M., Zheng, L., & Ritenour, M. A. (2018). Non-destructive
recognition and classification of citrus fruit blemishes based on ant colony
optimized spectral information. Postharvest Biology and Technology, 143,
119–128. https://doi.org/10.1016/j.postharvbio.2018.05.004
Zhang, Y., Nock, J. F., Al Shoffe, Y., & Watkins, C. B. (2020). Non-destructive
prediction of soluble solids and dry matter concentrations in apples using near-
infrared spectroscopy. Acta Horticulturae, 1275, 341–348. https://doi.org/10.
17660/ActaHortic.2020.1275.47
237