Page 248 - SDMD CNKT va CNTT trong tien trinh CNH_HDH DBSCL
P. 248

Rungpichayapichet, P., Mahayothee, B., Nagle, M., Khuwijitjaru, P., & Müller, J.
              (2016). Robust NIRS models for non-destructive prediction of postharvest fruit
              ripeness  and  quality  in  mango.  Postharvest  Biology  and  Technology,
              111(1111), 31–40. https://doi.org/10.1016/j.postharvbio.2015.07.006
          Saenphon, C., Ditcharoen, S., Malai, C., Saengprachatanarug, K., Wongpichet, S.,
              Sirisomboon, P., Saechua, W., Khurnpoon, L., Phuphaphud, A., Maraphum, K.,
              & Posom, J. (2023). Total soluble solids, dry matter content prediction and
              maturity  stage  classification  of  durian  fruit  using  long-wavelength  NIR
              reflectance.  Journal  of  Food  Composition  and  Analysis,  124,  105667.
              https://doi.org/10.1016/j.jfca.2023.105667
          Sahachairungrueng,  W.,  &  Teerachaichayut,  S.  (2019).  Qualitative  analysis  for
              sweetness classification of longan by near infrared hyperspectral imaging. IOP
              Conference  Series:  Materials  Science  and  Engineering,  639(1),  012038.
              https://doi.org/10.1088/1757-899X/639/1/012038
          Sahachairungrueng,  W.,  &  Teerachaichayut,  S.  (2022).  Nondestructive  quality
              assessment of longans using near infrared hyperspectral imaging. Agricultural
              Engineering International: CIGR Journal, 24(1), 217–227.
          Samamad, N. T. I., Ribeiro, L. P. D., de Almeida Lopes, M. M., Puschmann, R., &
              de Oliveira Silva, E. (2018). Near infrared spectroscopy, a suitable tool for fast
              phenotyping  –  The  case  of  cashew  genetic  improvement.  Scientia
              Horticulturae, 238(February), 363–368. https://doi.org/10.1016/j.scienta.2018.
              05.007
          Serra, S., Goke, A., Diako, C., Vixie, B., Ross, C., & Musacchi, S. (2019). Consumer
              perception  of  d’Anjou  pear  classified  by  dry  matter  at  harvest  using  near‐
              infrared spectroscopy. International Journal of Food Science & Technology,
              54(6), 2256–2265. https://doi.org/10.1111/ijfs.14140
          Sohaib Ali Shah, S., Zeb, A., Qureshi, W. S., Malik, A. U., Tiwana, M., Walsh, K.,
              Amin, M., Alasmary, W., & Alanazi, E. (2021). Mango maturity classification
              instead of maturity index estimation: A new approach towards handheld NIR
              spectroscopy.  Infrared  Physics  &  Technology,  115(January),  103639.
              https://doi.org/10.1016/j.infrared.2021.103639
          Srivastava, S., & Sadistap, S. (2018). Non-destructive sensing methods for quality
              assessment  of  on-tree  fruits:  a  review.  Journal  of  Food  Measurement  and
              Characterization, 12(1), 497–526. https://doi.org/10.1007/s11694-017-9663-6
          Sun, M., Zhang, D., Liu, L., & Wang, Z. (2017). How to predict the sugariness and
              hardness  of  melons:  A  near-infrared  hyperspectral  imaging  method.  Food
              Chemistry, 218, 413–421. https://doi.org/10.1016/j.foodchem.2016.09.023





          234
   243   244   245   246   247   248   249   250   251   252   253