Page 247 - Công nghệ kỹ thuật và công nghệ thông tin trong tiến trình công nghiệp hóa - hiện đại hóa Đồng bằng sông Cửu Long
P. 247

Munawar,  A.  A.,  Zulfahrizal,  Meilina,  H., &  Pawelzik,  E. (2022).  Near infrared
              spectroscopy as a fast and non-destructive technique for total acidity prediction
              of intact mango: Comparison among regression approaches.  Computers and
              Electronics in Agriculture, 193(3), 106657. https://doi.org/10.1016/j.compag.
              2021.106657
          Nghiệm, N. C. , Lộc, N.  P., Dũng, N. H., & Ngôn, N. C. (2021). Tổng quan về đánh
              giá chất lượng trái cây bằng phương pháp không phá hủy. TNU Journal of
              Science  and  Technology,  226(11),  158–167.  https://doi.org/10.34238/tnu-
              jst.4673
          Nguyen, C.-N., Lam, V.-L., Le, P.-H., Ho, H.-T., & Nguyen, C.-N. (2022). Early
              detection  of  slight  bruises  in  apples  by  cost-efficient  near-infrared  imaging.
              International Journal of Electrical and Computer Engineering (IJECE), 12(1),
              349. https://doi.org/10.11591/ijece.v12i1.pp349-357
          Nguyen, C.-N., Phan, Q.-T., Tran, N.-T., Fukuzawa, M., Nguyen, P.-L., & Nguyen,
              C.-N.  (2020).  Precise  sweetness  grading  of  mangoes  (Mangifera  indica  L.)
              based on random forest technique with low-cost multispectral sensors. IEEE
              Access, 8, 212371–212382. https://doi.org/10.1109/ACCESS.2020.3040062
          Nguyen, N. M. T., & Liou, N.-S. (2022). Ripeness evaluation of achacha fruit using
              hyperspectral image data. Agriculture, 12(12), 2145. https://doi.org/10.3390/
              agriculture12122145
          Osinenko, P., Biegert, K., McCormick, R. J., Göhrt, T., Devadze, G., Streif, J., &
              Streif, S. (2021). Application of non-destructive sensors and big data analysis
              to  predict  physiological  storage  disorders  and  fruit  firmness  in  ‘Braeburn’
              apples.  Computers  and  Electronics  in  Agriculture,  183,  106015.
              https://doi.org/10.1016/j.compag.2021.106015
          Pissard, A., Marques, E. J. N., Dardenne, P., Lateur, M., Pasquini, C., Pimentel, M.
              F., Fernández Pierna, J. A., & Baeten, V. (2021). Evaluation of a handheld ultra-
              compact NIR spectrometer for rapid and non-destructive determination of apple
              fruit  quality.  Postharvest  Biology  and  Technology,  172(September  2020).
              https://doi.org/10.1016/j.postharvbio.2020.111375
          Ramírez Alberto, L., Cabrera Ardila, C. A., & Órtiz, F. A. P. (2023). A computer
              vision system for early detection of anthracnose in sugar mango (Mangifera
              indica) based on UV-A illumination. Information Processing in Agriculture,
              10(2), 204–215. https://doi.org/10.1016/j.inpa.2022.02.001
          Ripardo Calixto, R., Pinheiro Neto, L. G., da Silveira Cavalcante, T., Nascimento
              Lopes, F. G., Ripardo de Alexandria, A., & Silva, E. d. O. (2022). Development
              of a computer vision approach as a useful tool to assist producers in harvesting
              yellow melon in northeastern Brazil. Computers and Electronics in Agriculture,
              192(November 2021), 106554. https://doi.org/10.1016/j.compag.2021.106554




                                                                                233
   242   243   244   245   246   247   248   249   250   251   252