Page 247 - Công nghệ kỹ thuật và công nghệ thông tin trong tiến trình công nghiệp hóa - hiện đại hóa Đồng bằng sông Cửu Long
P. 247
Munawar, A. A., Zulfahrizal, Meilina, H., & Pawelzik, E. (2022). Near infrared
spectroscopy as a fast and non-destructive technique for total acidity prediction
of intact mango: Comparison among regression approaches. Computers and
Electronics in Agriculture, 193(3), 106657. https://doi.org/10.1016/j.compag.
2021.106657
Nghiệm, N. C. , Lộc, N. P., Dũng, N. H., & Ngôn, N. C. (2021). Tổng quan về đánh
giá chất lượng trái cây bằng phương pháp không phá hủy. TNU Journal of
Science and Technology, 226(11), 158–167. https://doi.org/10.34238/tnu-
jst.4673
Nguyen, C.-N., Lam, V.-L., Le, P.-H., Ho, H.-T., & Nguyen, C.-N. (2022). Early
detection of slight bruises in apples by cost-efficient near-infrared imaging.
International Journal of Electrical and Computer Engineering (IJECE), 12(1),
349. https://doi.org/10.11591/ijece.v12i1.pp349-357
Nguyen, C.-N., Phan, Q.-T., Tran, N.-T., Fukuzawa, M., Nguyen, P.-L., & Nguyen,
C.-N. (2020). Precise sweetness grading of mangoes (Mangifera indica L.)
based on random forest technique with low-cost multispectral sensors. IEEE
Access, 8, 212371–212382. https://doi.org/10.1109/ACCESS.2020.3040062
Nguyen, N. M. T., & Liou, N.-S. (2022). Ripeness evaluation of achacha fruit using
hyperspectral image data. Agriculture, 12(12), 2145. https://doi.org/10.3390/
agriculture12122145
Osinenko, P., Biegert, K., McCormick, R. J., Göhrt, T., Devadze, G., Streif, J., &
Streif, S. (2021). Application of non-destructive sensors and big data analysis
to predict physiological storage disorders and fruit firmness in ‘Braeburn’
apples. Computers and Electronics in Agriculture, 183, 106015.
https://doi.org/10.1016/j.compag.2021.106015
Pissard, A., Marques, E. J. N., Dardenne, P., Lateur, M., Pasquini, C., Pimentel, M.
F., Fernández Pierna, J. A., & Baeten, V. (2021). Evaluation of a handheld ultra-
compact NIR spectrometer for rapid and non-destructive determination of apple
fruit quality. Postharvest Biology and Technology, 172(September 2020).
https://doi.org/10.1016/j.postharvbio.2020.111375
Ramírez Alberto, L., Cabrera Ardila, C. A., & Órtiz, F. A. P. (2023). A computer
vision system for early detection of anthracnose in sugar mango (Mangifera
indica) based on UV-A illumination. Information Processing in Agriculture,
10(2), 204–215. https://doi.org/10.1016/j.inpa.2022.02.001
Ripardo Calixto, R., Pinheiro Neto, L. G., da Silveira Cavalcante, T., Nascimento
Lopes, F. G., Ripardo de Alexandria, A., & Silva, E. d. O. (2022). Development
of a computer vision approach as a useful tool to assist producers in harvesting
yellow melon in northeastern Brazil. Computers and Electronics in Agriculture,
192(November 2021), 106554. https://doi.org/10.1016/j.compag.2021.106554
233