Page 245 - SDMD CNKT va CNTT trong tien trinh CNH_HDH DBSCL
P. 245

Ding,  C.,  Feng,  Z.,  Wang,  D.,  Cui,  D.,  &  Li,  W.  (2021).  Acoustic  vibration
              technology: Toward a promising fruit quality detection method. Comprehensive
              Reviews  in  Food  Science  and  Food  Safety,  20(2),  1655–1680.
              https://doi.org/10.1111/1541-4337.12722
          Ditcharoen, S., Sirisomboon, P., Saengprachatanarug, K., Phuphaphud, A., Rittiron,
              R.,  Terdwongworakul,  A.,  Malai,  C.,  Saenphon,  C.,  Panduangnate,  L.,  &
              Posom, J. (2023). Improving the non-destructive maturity classification model
              for  durian  fruit  using  near-infrared  spectroscopy.  Artificial  Intelligence  in
              Agriculture, 7, 35–43. https://doi.org/10.1016/j.aiia.2023.02.002
          El-Mesery, H., Mao, H., & Abomohra, A. (2019). Applications of non-destructive
              technologies  for  agricultural  and  food  products  quality  inspection.  Sensors,
              19(4), 846. https://doi.org/10.3390/s19040846
          Farneti, B., Khomenko, I., Pietrella, M., Martinatti, P., Emanuelli, F., Aprea, E.,
              Maltoni, M. L., Baruzzi, G., Biasioli, F., & Giongo, L. (2021). Development of
              a  new  phenotypic  roadmap  to  improve  strawberry  aroma  based  on  direct
              injection  mass  spectrometry.  Acta  Horticulturae,  1309(1309),  971–978.
              https://doi.org/10.17660/ActaHortic.2021.1309.138
          Felix.  (2024).  Products  -  Felix  Instruments.  https://felixinstruments.com/food-
              science-instruments/
          Jaramillo-Acevedo, C. A., Choque-Valderrama, W. E., Guerrero-Álvarez, G. E., &
              Meneses-Escobar, C. A. (2020). Hass avocado ripeness classification by mobile
              devices  using  digital  image  processing  and  ANN  methods.  International
              Journal of Food Engineering, 16(12). https://doi.org/10.1515/ijfe-2019-0161
          Jie, D., & Wei, X. (2018). Review on the recent progress of non-destructive detection
              technology for internal quality of watermelon. Computers and Electronics in
              Agriculture, 151, 156–164. https://doi.org/10.1016/j.compag.2018.05.031
          Kasim, N. F. M., Mishra, P., Schouten, R. E., Woltering, E. J., & Boer, M. P. (2021).
              Assessing  firmness  in  mango  comparing  broadband  and  miniature
              spectrophotometers.  Infrared  Physics  and  Technology,  115(April),  103733.
              https://doi.org/10.1016/j.infrared.2021.103733
          Kharamat, W., Wongsaisuwan, M., & Wattanamongkhol, N. (2020). Durian ripeness
              classification from the knocking sounds using convolutional neural network. In
                    th
              2020 8  International Electrical Engineering Congress (IEECON) (pp. 1–4).
              IEEE https://doi.org/10.1109/iEECON48109.2020.229571
          Kinhal, V. (2019). Using dry matter as a measure of maturity and quality in mangos.
              https://felixinstruments.com/blog/using-dry-matter-as-a-measure-of-maturity-
              quality-in-mangos/
          Lan, W., Jaillais, B., Leca, A., Renard, C. M. G. C., & Bureau, S. (2020). A new
              application of NIR spectroscopy to describe and predict purees quality from the



                                                                                231
   240   241   242   243   244   245   246   247   248   249   250