Page 243 - Công nghệ kỹ thuật và công nghệ thông tin trong tiến trình công nghiệp hóa - hiện đại hóa Đồng bằng sông Cửu Long
P. 243

TÀI LIỆU THAM KHẢO
          Adak, M., & Yumusak, N. (2016). Classification of e-nose aroma data of four fruit
              types   by   ABC-based     neural   network.   Sensors,   16(3),   304.
              https://doi.org/10.3390/s16030304
          Aghilinategh, N., Dalvand, M. J., & Anvar, A. (2020). Detection of ripeness grades
              of berries using an electronic nose. Food Science and Nutrition, 8(9), 4919–
              4928. https://doi.org/10.1002/fsn3.1788
          Anderson, N. T., Walsh, K. B., Flynn, J. R., & Walsh, J. P. (2021a). Achieving
              robustness  across  season,  location and  cultivar  for  a NIRS  model for intact
              mango  fruit  dry  matter  content.  II.  Local  PLS  and  nonlinear  models.
              Postharvest Biology and Technology, 171, 111358. https://doi.org/10.1016/j.
              postharvbio.2020.111358
          Anderson, N. T., Walsh, K. B., Koirala, A., Wang, Z., Amaral, M. H., Dickinson, G.
              R., Sinha, P., & Robson, A. J. (2021b). Estimation of fruit load in Australian
              mango  orchards  using  machine  vision.  Agronomy,  11(9),  1711.
              https://doi.org/10.3390/agronomy11091711
          Anderson, N. T., Walsh, K. B., Subedi, P. P., & Hayes, C. H. (2020). Achieving
              robustness  across  season,  location and  cultivar  for  a NIRS  model for intact
              mango  fruit  dry  matter  content.  Postharvest  Biology  and  Technology,
              168(June), 111202. https://doi.org/10.1016/j.postharvbio.2020.111202
          Ayllon, M. A., Cruz, M. J., Mendoza, J. J., & Tomas, M. C. (2019). Detection of
              overall  fruit  maturity  of  local  fruits  using  convolutional  neural  networks
                                                        nd
              Through Image Processing. Proceedings of the 2  International Conference on
              Computing  and  Big  Data  -  ICCBD  2019,  145–148.  https://doi.org/10.1145/
              3366650.3366681
          Baculo, M. J. C., & Marcos, N. (2018). Automatic mango detection using image
              processing  and  HOG-SVM.  Proceedings  of  the  2018  VII  International
              Conference  on  Network,  Communication  and  Computing,  211–215.
              https://doi.org/10.1145/3301326.3301358
          Baietto,  M.,  &  Wilson,  A.  (2015).  Electronic-nose  applications  for  fruit
              identification,  ripeness  and  quality  grading.  Sensors,  15(1),  899–931.
              https://doi.org/10.3390/s150100899
          Beghi,  R.,  Buratti,  S.,  Giovenzana,  V.,  Benedetti,  S.,  &  Guidetti,  R.  (2017).
              Electronic nose and visible-near infrared spectroscopy in fruit and vegetable
              monitoring.   Reviews   in    Analytical   Chemistry,   36(4),   1–24.
              https://doi.org/10.1515/revac-2016-0016
          Behera,  S.  K.,  Sangita,  S.,  Rath,  A.  K.,  &  Sethy,  P.  K.  (2019).  Automatic
              classification  of  mango  using  statistical  feature  and  SVM.  In Advances  in
              Computer, Communication and Control: Proceedings of ETES 2018 (pp. 469-
              475). Springer Singapore. https://doi.org/10.1007/978-981-13-3122-0

                                                                                229
   238   239   240   241   242   243   244   245   246   247   248