Page 250 - SDMD CNKT va CNTT trong tien trinh CNH_HDH DBSCL
P. 250

Valasiadis, D., Kollaros, M. G., Michailidis, M., Polychroniadou, C., Tanou, G.,
              Bazakos, C., & Molassiotis, A. (2024). Wide-characterization of high and low
              dry matter kiwifruit through spatiotemporal multi-omic approach. Postharvest
              Biology   and   Technology,   209,   112727.   https://doi.org/10.1016/j.
              postharvbio.2023.112727
          Văn phòng Chính phủ. (2022, June 21). Thông tin báo chí, Hội nghị công bố “Quy
              hoạch vùng đồng bằng sông Cửu Long thời kỳ 2021 - 2030.”
          Velásquez, C., Aleixos, N., Gomez-Sanchis, J., Cubero, S., Prieto, F., & Blasco, J.
              (2024a).  Enhancing  anthracnose  detection  in  mango  at  early  stages  using
              hyperspectral  imaging  and  machine  learning.  Postharvest  Biology  and
              Technology,  209(August  2023).  https://doi.org/10.1016/j.postharvbio.2023.
              112732
          Velásquez, C., Prieto, F., Palou, L., Cubero, S., Blasco, J., & Aleixos, N. (2024b).
              New model for the automatic detection of anthracnose in mango fruits based on
              Vis/NIR  hyperspectral  imaging  and  discriminant  analysis.  Journal  of  Food
              Measurement and Characterization, 18(1), 560–570. https://doi.org/10.1007/
              s11694-023-02173-3
          Walsh, J., Neupane, A., & Li, M. (2024). Evaluation of 1D convolutional neural
              network in estimation of mango dry matter content. Spectrochimica Acta Part
              A: Molecular and Biomolecular Spectroscopy, 311, 124003. https://doi.org/10.
              1016/j.saa.2024.124003
          Wang, Z., Walsh, K., & Verma, B. (2017). On-tree mango fruit size estimation using
              RGB-D images. Sensors, 17(12), 2738. https://doi.org/10.3390/s17122738
          Wei, H., & Gu, Y. (2020). A machine learning method for the detection of brown
              core in the Chinese pear variety huangguan using a MOS-based e-nose. Sensors,
              20(16), 4499. https://doi.org/10.3390/s20164499
          Wiktor, A., Gondek, E., Jakubczyk, E., Nowacka, M., Dadan, M., Fijalkowska, A.,
              &  Witrowa-Rajchert,  D.  (2016).  Acoustic  emission  as  a  tool  to  assess  the
              changes  induced  by  pulsed  electric  field  in  apple  tissue.  Innovative  Food
              Science  &  Emerging  Technologies,  37,  375–383.  https://doi.org/10.1016/j.
              ifset.2016.04.008
          Xiao,  Y.,  Kuang,  J.,  Qi,  X.,  Ye,  Y.,  Wu,  Z.-X.,  Chen,  J.,  &  Lu,  W.  (2018).  A
              comprehensive investigation of starch degradation process and identification of
              a  transcriptional  activator  MabHLH6  during  banana  fruit  ripening.  Plant
              Biotechnology Journal, 16(1), 151–164. https://doi.org/10.1111/pbi.12756
          Xu, S., Lu, H., Ference, C., & Zhang, Q. (2019). Visible/near infrared reflection
              spectrometer  and  electronic  nose  data  fusion  as  an  accuracy  improvement
              method for  portable total soluble  solid  content detection  of  orange.  Applied
              Sciences, 9(18), 3761. https://doi.org/10.3390/app9183761




          236
   245   246   247   248   249   250   251   252   253   254   255