Page 343 - SDMD CNKT va CNTT trong tien trinh CNH_HDH DBSCL
P. 343

Mikołajczyk, A., & Grochowski, M. (2018, May). Data augmentation for improving
              deep  learning  in  image  classification  problem.  2018  International
              Interdisciplinary PhD Workshop (IIPhDW) (pp. 117-122). https://doi.org/10.
              1109/IIPHDW.2018.8388338
          Naraei, P., Abhari, A., & Sadeghian, A. (2016). Application of multilayer perceptron
              neural  networks  and  support  vector  machines  in  classification  of  healthcare
              data.  2016  Future  Technologies  Conference  (FTC)  (pp.  848-852).  San
              Francisco, CA, USA: IEEE. https://doi.org/10.1109/FTC.2016.7821702
          Ngọc, B. (2023). Liên kết nâng cao năng lực hệ thống y tế vùng đồng bằng sông Cửu
              Long.   https://nangluongsachvietnam.vn/d6/vi-VN/news/Lien-ket-nang-cao-
              nang-luc-he-thong-y-te-vung-dong-bang-song-Cuu-Long-6-1955-20162
          Nguyen, H. T., Nguyen, C. N. T., Phan, T. M. N., & Dao, T. C. (2021). Pleural
              effusion  diagnosis  using  local  interpretable  pleural  effusion  diagnosis  using
              local  interpretable  network.  IEIE  Transactions  on  Smart  Processing  and
              Computing, 10(2), 101-108. https://doi.org/10.5573/IEIESPC.2021.10.2.101
          Panicker,  S.  (2020).  Use  of  machine  learning  techniques  in  healthcare:  A  brief
                                                        nd
              review of cardiovascular disease classification. 2  International Conference on
              Communication and Information Processing (ICCIP).
          Pham, H. H., Trung, H. N., & Nguyen, H. Q. (2022). VinDr-Mammo: A large-scale
              benchmark  dataset  for  computer-aided  detection  and  diagnosis  in  full-field
              digital mammography. https://doi.org/10.13026/br2v-7517
          Phong,  T.  (2023).  Chuyển  đổi  số  trong  ngành  y  tế  cần  cơ  chế  để  thực  hiện.
              https://www.baosoctrang.org.vn/chuyen-doi-so/chuyen-doi-so-trong-nganh-y-
              te-can-co-che-de-thuc-hien-67366.html
          Polsinelli, M., Cinque, L., & Placidi, G. (2020). A light CNN for detecting COVID-
              19  from  CT  scans  of  the  chest.  Pattern  Recognition  Letters,  140,  95-100.
              https://doi.org/10.1016/j.patrec.2020.10.001
          Quyên, Đ. (2023). Hội thảo "Chuyển đổi số ngành Y tế thành phố Cần Thơ, lần 1
              năm 2023". https://soytecantho.vn/Default.aspx?tabid=979&ndid=201093
          Ribeiro,  M.  T.,  Singh,  S.,  &  Guestrin,  C.  (2016).  "Why  should  I  trust  you?":
                                                                            nd
              Explaining  the  predictions  of  any  classifier.  Proceedings  of  the  22   ACM
              SIGKDD international conference on knowledge discovery and data mining
              (pp. 1135-1144). https://doi.org/10.1145/2939672.2939778
          Şahin,  G.  G.,  &  Steedman,  M.  (2018).  Data  augmentation  via  dependency  tree
              morphing for low-resource languages. Proceedings of the 2018 Conference on
              Empirical  Methods  in  Natural  Language  Processing  (pp.  5004–5009).
              https://doi.org/10.18653/v1/D18-1545






                                                                                329
   338   339   340   341   342   343   344   345   346   347   348