Page 342 - Công nghệ kỹ thuật và công nghệ thông tin trong tiến trình công nghiệp hóa - hiện đại hóa Đồng bằng sông Cửu Long
P. 342
Gulordava, K., Bojanowski, P., Grave, E., Linzen, T., & Baroni, M. (2018).
Colorless green recurrent networks dream hierarchically. Proceedings of the
2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT
2018. 1 (pp. 1195–1205). Association for Computational Linguistics.
https://doi.org/10.18653/v1/N18-1108
Guo, D., Kim, Y., & Rush, A. M. (2020). Sequence-level mixed sample data
augmentation. Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020 (pp. 5547–5552). Association for
Computational Linguistics. https://doi.org/10.18653/v1/2020.emnlp-main.447
Guo, H. (2020). Nonlinear mixup: Out-of-manifold data augmentation for text
classification. Proceedings of the AAAI Conference on Artificial Intelligence,
34(4), 4044–4051. https://doi.org/10.1609/aaai.v34i04.5822
Guo, H., Mao, Y., & Zhang, R. (2019, July). Mixup as locally linear out-of-manifold
regularization. In Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01), 3714–3722. https://doi.org/10.1609/aaai.v33i01.33013714
Hussain, Z., Gimenez, F., Yi, D., & Rubin, D. (2017). Differential data augmentation
techniques for medical imaging classification tasks. AMIA annual symposium
proceedings (p. 979). American Medical Informatics Association.
Kaur, P., Kumar, R. & Kumar, M. (2019). A healthcare monitoring system using
random forest and internet of things (IoT). Multimedia Tools and Applications,
78, 19905–19916. https://doi.org/10.1007/s11042-019-7327-8
Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from
highly imbalanced data using random forest. BMC Med Inform Decis Mak, 11,
1-13. https://doi.org/10.1186/1472-6947-11-51
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Advances in Neural Information
Processing Systems, 25.
Linh, P. (2023). Quá tải bệnh nhân, y bác sĩ Cần Thơ chia nhau gồng gánh.
https://laodong.vn/y-te/qua-tai-benh-nhan-y-bac-si-can-tho-chia-nhau-gong-
ganh-1269830.ldo
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model
predictions. Advances in Neural Information Processing Systems 30 (NIPS
2017). https://doi.org/10.48550/arXiv.1705.07874
Marling, C., & Bunescu, R. (2018). The ohiot1dm dataset for blood glucose level
rd
prediction. The 3 International Workshop on Knowledge Discovery in
Healthcare Data. Stockholm, Sweden.
328