Page 341 - Công nghệ kỹ thuật và công nghệ thông tin trong tiến trình công nghiệp hóa - hiện đại hóa Đồng bằng sông Cửu Long
P. 341
TÀI LIỆU THAM KHẢO
Akerkar, R. (2019). Artificial intelligence for business. Springer.
https://doi.org/10.1007/978-3-319-97436-1
Aliberti, A., Bagatin, A., Acquaviva, A., Macii, E., & Patti, E. (2020). Data Driven
Patient-Specialized Neural Networks for Blood Glucose Prediction.
Proceedings of the 2020 IEEE International Conference on Multimedia & Expo
Workshops (ICMEW), (pp. 1-6). London.
Anh, Đ. (2015). Chú trọng y tế cơ sở. https://baotintuc.vn/tin-tuc/chu-trong-y-te-co-
so-20150910082451479.htm
Bache, K., & Lichman, M. (2013). UCI Machine Learning Repository.
https://archive.ics.uci.edu/
Bộ Y tế. (2022). Tóm tắt nội dung quy hoạch mạng lưới cơ sở y tế thời kỳ 2021 –
2030, tầm nhìn đến năm 2050 (Dự thảo lần 9 – Đã xin ý kiến Bộ Quốc phòng,
Bộ Công an).
Caetano, A. P., Neves, T. R., Prata, R. P., Freitas, P. S., Forjaco, A., Almeida e Sousa,
M., ... & Dias, J. L. (2020). Development of a Portuguese COVID-19 imaging
repository and database: Learning and sharing knowledgeduring a pandemic.
Acta Médica Portuguesa, 33(6), 447-448.
Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., & Haworth, A.
(2021). A review of medical image data augmentation techniques for deep
learning applications. Journal of Medical Imaging and Radiation Oncology,
65(5), 545-563. https://doi.org/10.1111/1754-9485.13261
Dangare, C. S., & Apte, S. S. (2012). Improved study of heart disease prediction
system using data mining classification techniques. International Journal of
Computer Applications, 47, 44-48.
Dung, H. (2023). Giải quyết dứt điểm tình trạng thiếu thuốc, trang thiết bị, vật tư y
tế. https://nhandan.vn/giai-quyet-dut-diem-tinh-trang-thieu-thuoc-trang-thiet-
bi-vat-tu-y-te-post741086.html
Fadaee, M., Bisazza, A., & Monz, C. (2017). Data augmentation for low-resource
th
neural machine translation. Proceedings of the 55 Annual Meeting of the
Association for Computational Linguistics (pp. 567–573).
https://doi.org/10.18653/v1/P17-2090
Galdran, A., Alvarez-Gila, A., Meyer, M. I., Saratxaga, C. L., Araújo, T., Garrote,
E., ... & Campilho, A. (2017). Data-driven color augmentation techniques for
deep skin image analysis. https://doi.org/10.48550/arXiv.1703.03702
García, M. N. M., Herráez, J. C. B., Barba, M. S., & Hernández, F. S. (2016).
Random forest based ensemble classifiers for predicting healthcare-associated
infections in intensive care units. Distributed Computing and Artificial
th
Intelligence, 13 International Conference (pp. 303-311). Springer
International Publishing. https://doi.org/10.1007/978-3-319-40162-1_33
327