Page 341 - SDMD CNKT va CNTT trong tien trinh CNH_HDH DBSCL
P. 341

TÀI LIỆU THAM KHẢO

          Akerkar,   R.   (2019).   Artificial   intelligence   for   business.   Springer.
              https://doi.org/10.1007/978-3-319-97436-1
          Aliberti, A., Bagatin, A., Acquaviva, A., Macii, E., & Patti, E. (2020). Data Driven
              Patient-Specialized  Neural  Networks  for  Blood  Glucose  Prediction.
              Proceedings of the 2020 IEEE International Conference on Multimedia & Expo
              Workshops (ICMEW), (pp. 1-6). London.
          Anh, Đ. (2015). Chú trọng y tế cơ sở. https://baotintuc.vn/tin-tuc/chu-trong-y-te-co-
              so-20150910082451479.htm
          Bache,  K.,  &  Lichman,  M.  (2013).  UCI  Machine  Learning  Repository.
              https://archive.ics.uci.edu/
          Bộ Y tế. (2022). Tóm tắt nội dung quy hoạch mạng lưới cơ sở y tế thời kỳ 2021 –
              2030, tầm nhìn đến năm 2050 (Dự thảo lần 9 – Đã xin ý kiến Bộ Quốc phòng,
              Bộ Công an).
          Caetano, A. P., Neves, T. R., Prata, R. P., Freitas, P. S., Forjaco, A., Almeida e Sousa,
              M., ... & Dias, J. L. (2020). Development of a Portuguese COVID-19 imaging
              repository and database: Learning and sharing knowledgeduring a pandemic.
              Acta Médica Portuguesa, 33(6), 447-448.
          Chlap,  P.,  Min,  H.,  Vandenberg,  N.,  Dowling,  J.,  Holloway,  L., &  Haworth, A.
              (2021).  A  review  of  medical  image  data  augmentation  techniques  for  deep
              learning applications.  Journal of Medical Imaging and Radiation Oncology,
              65(5), 545-563. https://doi.org/10.1111/1754-9485.13261
          Dangare, C. S., & Apte, S. S. (2012). Improved study of heart disease prediction
              system using data mining classification techniques.  International Journal of
              Computer Applications, 47, 44-48.
          Dung, H. (2023). Giải quyết dứt điểm tình trạng thiếu thuốc, trang thiết bị, vật tư y
              tế.  https://nhandan.vn/giai-quyet-dut-diem-tinh-trang-thieu-thuoc-trang-thiet-
              bi-vat-tu-y-te-post741086.html
          Fadaee, M., Bisazza, A., & Monz, C. (2017). Data augmentation for low-resource
                                                            th
              neural  machine  translation.  Proceedings  of  the  55   Annual  Meeting  of  the
              Association   for    Computational     Linguistics   (pp.   567–573).
              https://doi.org/10.18653/v1/P17-2090
          Galdran, A., Alvarez-Gila, A., Meyer, M. I., Saratxaga, C. L., Araújo, T., Garrote,
              E., ... & Campilho, A. (2017). Data-driven color augmentation techniques for
              deep skin image analysis. https://doi.org/10.48550/arXiv.1703.03702
          García,  M.  N.  M.,  Herráez,  J.  C.  B.,  Barba,  M.  S.,  &  Hernández,  F.  S.  (2016).
              Random forest based ensemble classifiers for predicting healthcare-associated
              infections  in  intensive  care  units.  Distributed  Computing  and  Artificial
                             th
              Intelligence,  13   International  Conference  (pp.  303-311).  Springer
              International Publishing. https://doi.org/10.1007/978-3-319-40162-1_33


                                                                                327
   336   337   338   339   340   341   342   343   344   345   346